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Noncanonical, Lie algebraic, hamiltonian strucutures in the eulerian description of ideal continuum mechanics are
shown to be compatible with nearly canonical structures in the lagrangrian description. Examples are given for compres-
sible ideal fluid dynamics, magnetohydrodynamics, nonlinear elasticity, multifluid plasmas, superfluids 4He and 3He-A,
and chromohydrodynamics.

Introduction. Hamiltonian formulations in terms of canonical Poisson brackets in the eulerian description of
continuum mechanics have traditionally been given by the introduction of auxiliary “Clebsch potentials,”some
of which are unphysical, but are required in order to complete the hamiltonian structure. For reviews of the tra-
ditional eulerian Clebsch method and details of its application, see, e.g., refs. [1-5].

Recently, noncanonical Poisson brackets have also been introduced for various nonlinear field theories, includ-
ing Maxwell—Vlasov equations [6], magnetohydrodynamics [4,7], multifluid plasma dynamics [4,8], nonlinear
elasticity [4,9], superfluids [5,9], and even chromohydrodynamics, which is the nonabelian extension of plasma
physics to Yang—Mills fields [10,11]. For a survey of some of the noncanonical brackets, see, e.g., [12]. In each
of these cases, noncanonical Poisson brackets are essential to the hamiltonian formulation of the theory in terms
of physical variables in the eulerian description.

One approach to finding these noncanonical Poisson brackets in the eulerian physical variables is to show (as a
first step) that under a certain map ¢, a canonical hamiltonian structure in Clebsch variables is compatible with a
noncanonical structure, expressed in terms of the physical variables of the theory. The map ¢ relates the physical
variables to Clebsch potentials and their gradients.

A difficulty in principle with such noncanonical Poisson brackets, even those compatible with canonical brackets,
is to verify that they do, indeed, satisfy the Jacobi identity. However, if the brackets so derived are linear in their
variables, then they can be associated readily with appropriate Lie algebras. This guarantees that the Jacobi iden-
tity is satisfied. Applications of this approach appear, e.g., in refs. [4,5,10,11,13].

In contrast to the eulerian description, the lagrangian description of continuum mechanics has a nearly canonical
hamiltonjan formulation with physically meaningful (unlike the usual Clebsch representation), canonically conju-
gate positions and momenta reminiscent of particle dynamics, plus additional fluid variables, whose meaning and
Poisson brackets will be discussed below. Below, we simply call the hamiltonian formulation “canonical” in the
lagrangian description.

In the present work, we show that the canonical structures in the lagrangian description are compatible with
noncanonical hamiltonian structures of continuum mechanics in the eulerian description, when the map ¢ is the
natural lagrangian-to-eulerian map which changes both the independent and dependent variables. As far as we are
aware, the first discussion of such compatibility of hamiltonian structures in eulerian and lagrangian descriptions
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of hydrodynamics appears (for the one-dimensional case) in the interesting and stimulating paper [14]. More re-
cently, the idea of connecting Poisson brackets for fluids in the lagrangian and eulerian descriptions has reappeared
in the case of superfluid “He [15]. Examples of these compatible hamiltonian structures are given here (in the n-
dimensional case) for ideal compressible fluid dynamics, magnetohydrodynamics, nonlinear elasticity, multifluid
plasmas, superfluids 4He and 3He-A, and chromohydrodynamics.

Basic set-up for commuting frozen-in variables. In the lagrangian description, a fluid element is labeled by its
lagrangian coordinate /;,i = 1, ... , n. It moves along a trajectory x(/, ) € R” with a certain (canonically conju-
gate) momentum n(l, t). The ﬂu1d motion transports mass, entropy, and other so-called “frozen-in” variables of
the fluid (e.g., magnetic field). The frozen-in variables G fﬁ) ikey B= 1,2, ..., m, are components of k(8)-forms
(or other tensors). Being frozen-in, they prescribe mltlal tdnditions for the ﬂow and, thus, are independent of time.

We use the following notation: Ak A¥(R™) k-forms on R”; D = D(R") vector fields on R”; Y; elements
of D. D acts upon itself by commutation of vector fields and acts upon A" * by Lie derivation, denoted, e.g., Y(¥)
for £ € A"k The symbol © denotes semidirect product; @ denotes direct sum. Latin indicesj = 1,2, ... ,n; 9 =
0/0xy ; 0y = 0a/dx; ; and $G/da the functional derivation of G with respect to dependent variable .. Lagrangian
time derivative is denoted by “dot”, e.g., &; eulerian time derivative, ,,. Sum on repeated indices, except where
the indices are enclosed in parentheses.

In terms of canonical variables x;, m;, and the frozen-in variables Cll(g) k(@) the hamiltonian structure is
very simple in the lagrangian description
X = . 7. = — . 5 O(ﬁ) . = i
x;=8H[8m;, SHdx;, Cl.1 TN 0, (D)

where H is the hamiltonian. Thus, for functionals G, H, of {x;, m;, CI? 12) ik } one has G = {H, G} with
Poisson bracket @

(H,G}= f [(5H[5m;) (6G/[8x;) — (8G/5m)(8H[5x,)] d™l , (2)

and canonical hamiltonian matrix

. ) 0
5T Ciyedigy

xi 0 51']' 0
B= 7(1. —5” 0 0 - (3)
c® |0 0 o0
112"‘lk(ﬁ)

In (3), the rows and columns are labeled by the entries in their corresponding Poisson brackets.

As we shall show, the physically meaningful lagrangian-to-eulerian (L—E) map produces a noncanonical,
Lie algebraic, hamiltonian structure in the eulerian description which is compatible with the original canonical
structure (3). The L—E map ¢ g from the lagrangian space
L= {62k = U ixpm QP o)
onto the eulerian space

= ol = M. C®
E {x;t)‘-)} {xj’t’MpCﬁab“_ik(ﬁ)}
is given by the formulas
t=t, dx;=Xdt+Fydl;, M;=mlJ, J:=detF, (4a)
c® =00 FFL Rl prl (4b)

hiodk@y Tiha-dk@ 711 iz 77 ik@Eike)’
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so that F; = ox;/ 0l;. More explicitly, for some fixed eulerian position y, one has

OFLFL R (4c)

ani sn(x(l JCO“”
11'2 lk(p)(y) f * - 11/1 1212 Tk@)Y k()

) k)
where §"(x (/) — p) is the n-dimensional Dirac delta function and the integral is taken over the lagrangian domain.
Important examples of the L—E map for frozen-in variables are known from magnetohydrodynajmcs and have
motivated the general formulas (4b) and (4¢), namely spemﬁc entropy n € A0 with n =70 magnetlc vector oten-
tial 4 € Al VA A F_ ; magnetic flux B=d4 € A2 By BkIFk FI] ; magnetic field A € An-1 FyN I
mass dens1ty P G A” p pO/J and entropy density ¢ € A" o= od/

The hamiltonian matrix 8 in (3) tranforms under the L—E map ¢; g: z(/) >v(x) = ¢[z,1] ,] > x = x(J), accord-
ing to a general formula,

b* = (Dv/Dz) B(dm, /dm,) (Dv/Dz)' 5)

where Dv/Dz is the Fréchet derivative and T denotes adjoint with respect to the measure dm;. For the L—E map,
the ratio of measures dm/dm; = J, and straightforward calculation of the Fréchet jacobian operator Dv/Dz fol-
lowed by matrix multiplication as in (5), gives the general result for the hamiltonian matrix in the eulerian de-
scription.

M. cm
! 11’%--)'11:(7) ;
M, 3+ 9. M; pcoMm . .
b= ¢ Myon v oM; O™ |, (6)
@ —DC® . /Dx;
llb""k(ﬁ) llh""k(ﬁ) 7

where, as in (3), the rows and columns are labeled by entries in the corresponding Poisson brackets. The Poisson
bracket associated with (6) takes the form

{H,G}=- f d"x {(5G/SM,)[(M;d; + ;M) (8H/6M;) + (DC}Z}ZM et /Dx )t (8H/6C](;7}2 ks ))]

—(60/60,.?,?2 )(OC c®) o/ DX GHISM} (7

iyip..
where the Fréchet derivative computed from (4b) can readily be shown to equal the “Lie derivative” form,
-pc® . px;=C®) +CO 3, +c® . 3 +..+CH 3 ®)

iyiy.dyg) 1112 tk(ﬂ“ Jiy.. ’k(ﬁ) i L. lk(ﬁ) i : iiy.. J’k(p)

Five special cases of physical importance are: A0, A1, A2, A”=1 A" The corresponding negatives of the Fréchet
derivatives appearing in the Poisson bracket (7) are, respectively:

)] 0] 0y (2) ) 2 (n—1) (n—1) (n)
i Ci1,i+cl' ai1’ Cu‘ J+Cﬂza’1 +Cllal ’ afCi1 ~Cn " Ombyyj g™

The Poisson bracket (7) is the natural Poisson bracket on the dual to the semidirect product Lie algebra
D® [Gr)‘3 A"*®] . The corresponding Lie algebraic commutator is, thus,

[(y; c;vs‘ﬂ’), (7, cg?‘ﬁ’)] =([v, Y]; <;>(Y(§@) — Y(£9))). ©9)

Dual coordinates are: M dual to Y€ D, and Cc® dual to g(f’) e AnK@),

Thus, we naturally recover the semidirect product structure in the eulerian descripti~n (previously obtained by
“experimental computation” in refs. [4,5,10,11,13}, from the direct product structure in the lagrangian descrip-
tion. The direct sum ®; appears in (9) since different frozen-in variables do not interfere amongst themselves
under the L—E map; additional frozen-in variables simply extend the direct sum.
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Remark. 1f P is a manifold with a Poisson bracket on it and o : P = L is a canonical map, then the composition
oo ¢rg : P~ E is also canonical. In particular, let P=T « G X T « V, where G is the group of diffeomorphisms of
R” (whose Lie algebra is D), and V « is the space of frozen-in variables. Taking « = idp, o X (proj on V «) (as was
suggested to us by Marsden and Weinstein), one obtains the canonical map gotten in ref. [16] by another method.

Applications of the basic set-up for commuting variables. For ideal magnetohydrodynamics (MHD) the physical
variables are given by: p, mass density; o, entropy density; M, fluid momentum density; and either magnetic vector
potential A;, or magnetic flux By =A4; ; — 4; ;. Via relations (4b) for the frozen-in variables p, 0 € A" and 4 =
A;dx; € A1 the L—E map takes the canonical bracket (3) into the following Poisson bracket in eulerian physical
varlables

{H,G} = — [ d"x {(5G/My)((M;0; + 3;M;)(SH[6M;)) + pd(6H[5p) + 00, (OH[50) + (—A; ; + 3,4 )(5H[54))]
+(8G/8p) 3;p(8H[6M;) + (8G[50) 3;0(8H/6M;) + (8G[8A)(A;; + A;0; D(OH[SM;)} . (10)

In obvious notation, (10) is defined to be the sum,

{H,G}=: {H,G}p + {H,G}, + {H,G}, + {H,G}, .

Thus, one recovers the Poisson bracket for MHD found in ref. [4] by another method and identified there as asso-
ciated to the semidirect product D © (A9 @ A? ® A"~1) In the same way, but in terms of different physical vari-
ables {p, o, M;, Bl-]-}, with B = Bijdxi A dxj € A2, one finds the Poisson bracket,

{H,G}=— f A"x {(8G/BM,3 [(M;0; + 9,M;)(8H[5M;) + pd (5H[5p) + d,(5H]5 0)
+ (<Bjy ;+ 0By + 0y Bi)(8H/6By;)] + (8G/5p) 3;0(SH|6M;) + (5G/60) ;0(5 H/5M;)
+ (8G/8B 1) By ; + BinOp + By, )(SH/SM;)}

mn,j n%m
{H,G}= {H, G}M+ {H, G}p + {H, G}a + {H, G}B. (an

This Poisson bracket is also discussed in ref. [4] and is identified there as living on the dual to the Lie algebra
D ® (A? ® A0 ® A7-2), Either one of the Poisson brackets (10) or (11) generates the equations of motion for
MHD as a hamiltonian system G = {H, G} with hamiltonian

H= [a"x[IM12/20 + pe(p, olp) ~ 4 Tr B2] . (12)

where Tr B2 = (Ai,j - Aj,i)(Aj,i - Al-’]-). When the magnetic fields are absent, the hamiltonian, equations of motion,
and Poisson brackets all reduce to those for compressible (adiabatic) fluid dynamics.

Next, in ideal elasticity, the physical variables include those for adiabatic fluid dynamics, p, ¢, M, as well as the
frozen-in lagrangian displacements 6y € AO(k), k=1, 2, .., n. Viarelations (4) the Poisson bracket in eulerian
physical variables is given by

H

{H,G} =~ f dx [55;4; [(M].a,.+ 0, M,)(8H/5M;) +pd(8H/5p) + 00;(6H/50) — kE:l 0. i(sH/zse(k))]

+(8G/5) 3;p(SH/[8M;) + (8G/80) ;0 (8H/5M;) + 1?‘:’1 (5G/80 @) 0., j(BH/SMj)},

n
{H,G}= {H,G}p + {H,G}, + {H,G}, + kZ)l {H, GYg s (13)
As discussed in [4], the Lie algabra responsible for this bracket is
n
D @(AO @ Aok@l Al (k)) .
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Hamilton’s equations for elasticity are treated, e.g., in ref. [3].

For a third example, in ideal plasma dynamics in the fluid approximation (see, e.g., refs. [4], [8]), the physical
variables are: mass density p; entropy density o; self-consistent electric field E and magnetic vector potential A4:
and the total momentum density = pO(u + (q/m)A), where u = % is particle velocity and g/m is the charge to mass
ration of the particles. The equations of motion are simply Hamilton’s canonical equations (1), with hamiltonian

H= [ a1000)[1 I%/p° — (a/m)A(x, )2 + (gIm) @ (x, 1) + €(o0L, OUN)] + [d"x(F|E|2 —3T1B2 +E-VE)
(14)
in a mixed description, which is lagrangian for fluid variables x,®, and eulerian for the canonically conjugate elec-

tromagnetic fields £, A.

Mapping the canonical fluid variables x, 7, and the frozen-in variables p¥ and ¢0 via (4a), (4c) leads to the fol-
lowing Poisson bracket

{H,G}={H,G}y, + {H, G}p +{H,G}, + {H,G}p_, , (15)

where {H, G}g_4 is the canonical bracket in E' and 4. For the ideal plasma equations with multiple particle spe-
cies, the sum over species appears in the lagrangian fluid part of H in (14), and the first three terms in the eulerian
bracket (15) acquire summation over species; otherwise, the Poisson structure is unchanged. The resulting multi-
fluid plasma bracket, thus, recovers the form in ref. [4] which is associated to the dual of the direct sum

N
@ D) @ (A () ® A ,

with species label s = 1, 2, ... , NV, and the following dual coordinates: M® = p® () + 46 /m®) 4) dual to vector
fields in D(s) and p©@, 0, each dual to functions in AO(s).

More General Cases. In practice, most fluid dynamical systems are less elementary than those considered thus
far: e.g., superfluids and nonabelian fluids. For such systems, two new features appear in the noncanonical Poisson
brackets. First, the hamiltonian matrix associated with the Poisson bracket can contain constant terms, in addition
to the linear terms discussed previously. For example, this occurs in the case of superfluid 4He, see, e.g., ref. [4].
Second, some parts of the Poisson bracket may be associated to finite-dimensional Lie algebras, as occurs, e.g., for
chromohydrodynamics [10,11] and superfluid 3He-A [4]. When either (or both) of these new features appear,
the L—E map continues to provide natural canonical representations, when appropriate changes are made in the
previously canonical structure in the lagrangian picture, as follows.

Let us express the Poisson bracket (7) in shorthand notation as

{H,G}={H,G)p + %} {H,Gle - (16)
In the first case, when constant terms appear in the hamiltonian matrix, the bracket (16) becomes

{H,G}= {H,G)y + ?{H, Glog *+ 27) {H, Gl » a7
where the subscript S(7) on the last term refers to “symplectic” and

{H, Glg¢) = — f d"x [(8G/8CM) + (8H[SC M) — (SH/5CW)Y+ (5G/6CM)] . (18)

(In place of “dot” in formula (18) there could stand certain linear differential operators, see ref. [91, but we are
not treating this case in the present paper.) The index v ranges over a subrange of that for §, while C™ € AP—*(?)

for COY) € Ak, Vector notation is used in (18) for variational derivatives, summed over components of C® and
.

In view of the L—E map, the additional terms (18) in bracket (17) arise from lagrangian equations of the form
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x;=8H|sm;, #,=— 8H/bx;, COM =_ §H[sCO 00 = SH/5CO0) | (19)
For example, in the case of superfluid 4He the corresponding Poisson bracket to (17) is (see formula (5) of ref. [5])
{H$G}= {H’G}M+ {HsG}p+{H5G}g+ {HsG}S(O)s (20)

where M is total (normal plus superfluid) momentum density, p is mass density, g entropy density (of normal fluid
only) and {H, G}, involves mass density p and superfluid phase o, according to

{H,G} =~ [ d"x [(5G/8p)(5H/5e) — (8H[Bp)(5G/5e)] . (21)

Therefore, the lagrangian description of superfluid 4He can be gotten from (19) with €% = p0, CO=a%andHasa
pullback of the eulerian hamiltonian taken from, e.g., ref. [17].

The second additional feature is noncommutativity, which means in the simplest circumstance that some of
the CO0) can take values in the duals, G (y)*, of various finite dimensional Lie algebras, G(7). The simplest non-
abelian case occurs when C0) € A" & g(M* =~ [AD ® Q(1)]*, where A0 ® @ () stands for functions on R”
with values in §(y). The corresponding additional pieces for the Poisson bracket (7) look as follows,

2 {H, Gy = 25 [ dnx [(8GI5p{P)(BH[Bpf) &, () pD] (22)
Y Y

where €5, (7) are structure constants of the Lie algebra @(y) and pl(l“f), etc., are coordinates on A" ® G(y)*. The
additional pieces (22) correspond to D ® [@,y (A%y) ® Q(v)].Examples where such noncommutative Poisson
brackets appear are given in ref. [10], formular (9), and ref. [11], formula (102). In the lagrangian description
for such cases, the equations of motion take the form

X;=8H[6m;, #y=—8H[bx;, Y = (8H[8p)M) €& (v) P00 | (23)

with H given as a pullback of the eulerian hamiltonian in refs. [10,11].

More generally, suppose that the set of all frozen-in variables (not only elements of A0) form a finite-dimen-
sional Lie algebra. Then, after the L—E map, exactly the same Lie algebra will reappear in the Poisson bracket for
eulerian variables. This applied, for example, in the case of superfluid 3He-A, see formular (24) of ref. [4].

In conclusion, we point out that the general procedure outlined in this paper can also be used to find noncanon-
ical Poisson brackets for a classical Yang—Mills/Vlasov plasma, described in terms of self-consistent, nonabelian
Yang—Mills fields and a distribution function on single-particle phase space, as already done in ref. [11].

This work was supported in part by NSF and DOE. We would like to acknowledge helpful conversations with
D. McLaughlin. We have also had useful conversations and correspondence with J. Marsden and A. Weinstein,
who (following the ideas of Arnol’d [18]) have independently worked on some of the questions addressed in the
first two sections of this paper.
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